
PythonAeselClient Documentation
Release 1.0.0

Alex Barry

Apr 27, 2019





Contents

1 Overview 1

2 License 3

3 Contact 5

4 Guides 7

5 API Documentation 11

i



ii



CHAPTER 1

Overview

This is a Python Implementation of the Aesel Client. For more information about Aesel, please visit the homepage,
https://aostreetart.com/aolabs/aesel/.

For the latest version of the documentation, please visit our ReadTheDocs site, https://pyaesel.readthedocs.io/en/latest.

To find the source code, please visit our github repository at https://github.com/AO-StreetArt/PyAesel.

1

https://aostreetart.com/aolabs/aesel/
https://pyaesel.readthedocs.io/en/latest
https://github.com/AO-StreetArt/PyAesel


PythonAeselClient Documentation, Release 1.0.0

2 Chapter 1. Overview



CHAPTER 2

License

PyAesel is licensed under the Apache2 license. For further details, please refer to the LICENSE file.

3



PythonAeselClient Documentation, Release 1.0.0

4 Chapter 2. License



CHAPTER 3

Contact

Stuck and need help? Have general questions about the application? We encourage you to publish your question on
Stack Overflow. We regularly monitor for the tag ‘aesel’ in questions.

We encourage the use of Stack Overflow for a few reasons:

• Once the question is answered, it is searchable and viewable by everyone else.

• The forum format offers an easy method to get a larger community involved with a tougher question.

If you believe that you have found a bug in Aesel, or have an enhancement request, we encourage you to raise an issue
on our github page.

5

https://stackoverflow.com
https://github.com/AO-StreetArt/Aesel


PythonAeselClient Documentation, Release 1.0.0

6 Chapter 3. Contact



CHAPTER 4

Guides

4.1 Installing PyAesel

4.1.1 Installing with pip

To install the latest build from pip:

pip install --user python-aesel-client

4.1.2 Using Development Versions

PyAesel requires Python and pip installed, and all other dependencies can be installed from the root project directory
with:

git clone https://github.com/AO-StreetArt/PyAesel.git
cd PyAesel
pip install --user -r requirements.txt

Finally, you can use pip to install the library locally:

pip install --user .

Go Home

4.2 Getting Started with Aesel

This tutorial assumes that you have successfully Installed PyAesel, and have a running Aesel Server.

Reading through the Aesel Workflow and the process for loading an Aesel Scene is also recommended.

7

https://aesel.readthedocs.io/en/latest/pages/quickstart.html
https://aesel.readthedocs.io/en/latest/pages/overview.html
https://aesel.readthedocs.io/en/latest/pages/loading.html


PythonAeselClient Documentation, Release 1.0.0

Please note that this is just intended as an overview of the functionality presented, for full documentation please refer
to modindex.

4.2.1 Using the Transaction Client

The first object you will generally interact with is the AeselTransactionClient. This is where we specify the Aesel
address, which we’ll have on localhost for this tutorial.

from aesel.AeselTransactionClient import AeselTransactionClient
http_client = AeselTransactionClient("http://localhost:8080")

The Transaction Client gives us access to the all of the HTTP Operations in the Aesel API. PyAesel also supplies
some basic classes as a data model that is passed to the client, for example creating an Asset with metadata can be
accomplished by:

from aesel.model.AeselAssetMetadata import AeselAssetMetadata
metadata = AeselAssetMetadata()
metadata.file_type = "json"
metadata.asset_type = "test"
new_key = http_client.create_asset("testupload.json", metadata)

In this case, a file in the base python directory called ‘testupload.json’ will be sent in a multipart file upload, and the
variable ‘new_key’ will be populated with the string key of the asset in the Aesel server. The same key can then be
used to retrieve the asset back out.

If the client is unable to connect, or receives a 400 or 500 HTTP Response from the server, then it will throw an
appropriate Exception.

Likewise, we can register to a Scene:

from aesel.model.AeselUserDevice import AeselUserDevice
ud = AeselUserDevice()
ud.key = "testDevice"
ud.hostname = "localhost"
ud.port = 8182
ud.connection_string = "http://localhost:8182"
register_resp = transaction_client.register("scene-key", ud)

In this case, the device will be registered to the specified scene, with the address specified being the UDP address the
device is listening on. The response will be a dictionary populated with the JSON information of the response from
the Aesel server.

4.2.2 Using the Event Client

In the response of a Scene Registration, you will be presented with UDP information (including IP/hostname, port,
and encryption information) which can then be used by the Event Client to send UDP updates for Objects and/or
Properties.

from aesel.AeselEventClient import AeselEventClient
event_client = AeselEventClient("localhost", 8762)

The same data model objects used in the Transaction Client are used by the Event Client, for example, to send an
object update:

8 Chapter 4. Guides

https://aesel.readthedocs.io/en/latest/pages/DVS_API.html


PythonAeselClient Documentation, Release 1.0.0

from aesel.model.AeselObject import AeselObject
obj = AeselObject()
obj.key = "obj-key"
obj.scene = "scene-key"
obj.transform = [2.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0,
→˓ 0.0, 2.0]
event_client.send_object_update(obj)

4.2.3 Security

The Transaction Client accepts both HTTP and HTTPS locations, and is capable of adding an authentication token via
the ‘set_auth_info’ method:

http_client = AeselTransactionClient("http://localhost:8080")
http_client.set_auth_info("auth-token")

After calling this method, all calls to the Aesel servers will include the provided authentication token.

The Event client accepts AES-256-cbc encryption details as part of it’s constructor and the ‘update_endpoint’ method.
These are generally provided by the registration response from the Aesel Server.

event_client = AeselEventClient("localhost", 8762, "encryption-key", "encryption-iv")

Go Home

4.3 Developer Notes

This page contains a series of notes intended to be beneficial for any contributors to the Python Aesel Client.

4.3.1 Running Tests

PyAesel tests require a running Aesel server on localhost, and can be run with:

python -m pytest

4.3.2 Generating Pip Distributions

In order to generate a PIP distribution, you’ll need a ~/.pypirc file with the contents:

[distutils]
index-servers=pypi

[pypi]
username: username
password: password

Then, the following commands will generate the distribution:

pip install --user twine
python setup.py sdist bdist_wheel
twine upload dist/*

4.3. Developer Notes 9



PythonAeselClient Documentation, Release 1.0.0

Go Home

10 Chapter 4. Guides



CHAPTER 5

API Documentation

• modindex

• search

11


	Overview
	License
	Contact
	Guides
	API Documentation

